Superconductivity in the americium metal as a function of pressure: probing the Mott transition.

نویسندگان

  • J-C Griveau
  • J Rebizant
  • G H Lander
  • G Kotliar
چکیده

High-pressure measurements of the resistivity of americium metal are reported to 27 GPa and down to temperatures of 0.4 K. The unusual dependence of the superconducting temperature (T(c)) on pressure is deduced. The critical field [H(c)(0) extrapolated to T=0] increases dramatically from 0.05 to approximately 1 T as the pressure is increased, suggesting that the type of superconductivity is changing as pressure increases. At pressures of approximately 16 GPa the 5f electrons of Am are changing from localized to itinerant, and the crystal structure also transforms to a complex one. The role of a Mott-type transition in the development of the peak in T(c) above 16 GPa is postulated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-d...

متن کامل

Strong coupling superconductivity, pseudogap, and Mott transition.

An intricate interplay between superconductivity, pseudogap, and Mott transition, either bandwidth driven or doping driven, occurs in materials. Layered organic conductors and cuprates offer two prime examples. We provide a unified perspective of this interplay in the two-dimensional Hubbard model within cellular dynamical mean-field theory on a 2×2 plaquette and using the continuous-time quant...

متن کامل

Quantum Mott Transition and Superconductivity

The gas-liquid transition is a first-order transition terminating at a finite-temperature critical point with diverging density fluctuations. Mott transition, a metal-insulator transition driven by Coulomb repulsion between electrons, has been identified with this textbook transition. However, the critical temperature of the Mott transition can be suppressed, resulting in unusual quantum critic...

متن کامل

Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors.

We study the Mott transition, antiferromagnetism, and superconductivity in layered organic conductors using the cellular dynamical mean-field theory for the frustrated Hubbard model. A d-wave superconducting phase appears between an antiferromagnetic insulator and a metal for t'/t=0.3-0.7 or between a nonmagnetic Mott insulator (spin liquid) and a metal for t'/t>or=0.8, in agreement with experi...

متن کامل

Magnetic fluctuations driven insulator-to-metal transition in Ca(Ir1−xRux)O3

Magnetic fluctuations in transition metal oxides are a subject of intensive research because of the key role they are expected to play in the transition from the Mott insulator to the unconventional metallic phase of these materials, and also as drivers of superconductivity. Despite much effort, a clear link between magnetic fluctuations and the insulator-to-metal transition has not yet been es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 94 9  شماره 

صفحات  -

تاریخ انتشار 2005